Heralded single photon sources based on intermodal four wave mixing

University of Trento
Department of Physics
Luca Garbi
July 23, 2020

Waveguide modes

1)
$$\mathbf{E}_m(\mathbf{r},t) = \mathscr{E}_m(x,y) \exp(i\beta_m z - i\omega t)$$

2)
$$\mathbf{H}_m(\mathbf{r},t) = \mathcal{H}_m(x,y) \exp(i\beta_m z - i\omega t)$$

•
$$\beta_m = \frac{\omega}{v} = \frac{\omega}{c} n_m^{\text{eff}}$$

•
$$\beta_m(\omega) = \sum_k \frac{1}{k!} \beta_m^{(k)} (\omega - \omega_0)^k$$

Nonlinear optical processes

For linear media:

$$\mathbf{P} = \varepsilon_0 \chi^{(1)} \mathbf{E}$$

Nonlinear media contribution:

$$\mathbf{P}_{NL} = \mathbf{P}^{(2)} + \mathbf{P}^{(3)} + \dots = \varepsilon_0 \left[\chi^{(2)} : \mathbf{EE} + \chi^{(3)} \vdots \mathbf{EEE} + \dots \right]$$

Schematization of some second order nonlinear processes:

Source reference [3].

Nonlinear optical processes

Some third order nonlinear processes:

Source reference [3].

The most common third order process:

• Energy conservation:

$$\hbar\omega_{p1} + \hbar\omega_{p2} = \hbar\omega_s + \hbar\omega_i$$

• Phase matching condition:

$$k_{p1} + k_{p2} = k_s + k_i$$

Nonlinear optical processes

Phase mismatch:

$$\Delta k = k_{p1} + k_{p2} - k_s - k_i$$
 \longrightarrow $\Delta \beta = 2\beta(\omega_p) - \beta(\omega_s) - \beta(\omega_i)$

$$\Delta \beta = -\beta_2(\omega_p) \Delta \omega^2 - \frac{1}{12} \beta_4(\omega_p) \Delta \omega^4 - \dots$$

Intermodal four wave mixing

$$\Delta k = \frac{\omega_p}{c} n_{\text{eff}}^{p_1}(\omega_p) + \frac{\omega_p}{c} n_{\text{eff}}^{p_2}(\omega_p) - \frac{\omega_s}{c} n_{\text{eff}}^s(\omega_s) - \frac{\omega_i}{c} n_{\text{eff}}^i(\omega_i)$$

Single photon sources

Ideal single photon source

- 100% single emission probability
- 0% multi-photon emission
- Indistinguishable subsequently emitted photons

The ideal photon gun

- → Deterministic sources (on-demand emission)
- → Probabilistic sources (heralded)
 - Photon number distribution: P(n) is the probability to detect n photons in the output beam

Heralded single photon sources

• Second order coherence $g^{(2)}(\Delta t)$: spatial and temporal correlation function between emitted photons

$$g^{(2)}(0) = \frac{\langle \hat{n}(\hat{n}-1)\rangle}{\langle \hat{n}\rangle^2} = \frac{\langle \hat{n}^2\rangle - \langle \hat{n}\rangle}{\langle \hat{n}\rangle^2}$$

$$g^{(2)}(0) = 0$$

$$g^{(2)}(0) = 0.5$$

$$g^{(2)}(0) = 1 + \frac{\Delta n^2 - \langle \hat{n} \rangle}{\langle \hat{n} \rangle^2}$$
with $\Delta n^2 = \langle \hat{n}^2 \rangle - \langle \hat{n} \rangle^2$

Characterizing parameters

• Purity: measurement of the single mode emission character

$$\Longrightarrow P = g^{(2)}(0) - 1$$

Coincidence to accidental ratio

$$CAR = \frac{R_{si} - R_{acc}}{R_{acc}}$$

$$SFWM \text{waveguide}$$

$$W_{i}$$

$$W_{b2}$$

$$W_{b2}$$

$$W_{i}$$

$$W_{b3}$$

$$W_{i}$$

$$W_{b2}$$

$$W_{b3}$$

$$W_{i}$$

Timing electronics

Other parameters

• Joint spectral intensity (JSI): correlations between signal and idler photons

• Heralding efficiency: probability to detect the heralded photon, given the detection of the herald

• Brightness, indistinguishability, quantum interference, ...

Chip and experimental setup

Waveguide cross-section:

input

3dB-DC

 $1.55~\mu\mathrm{m}$

ADC(λ_s

signal

 $\mathbf{W}_{\mathsf{FWM}}$

Experimental setup
(in the Nanoscience Laboratory

- University of Trento):

Heralded single photon source in the MIR

CAR measurement:

Maximum CAR: 36(5)

Heralded single photon source in the MIR

Purity measurement:

$$g^{(2)}(0) = \frac{P_{ss}(0)}{P_{ss}(\Delta t > 0)} = \frac{N_{ss}(0)}{N_{ss}(\Delta t > 0)}$$

Signal-signal $g^{(2)}(0)$ vs average pump power

Maximum purity:
$$P = g^{(2)}(0) - 1 = 0.68(13)$$

Heralded single photon source in the MIR

Antibunching measurement:

$$g_h^{(2)}(0) = \frac{N_{12i}(0)}{N_{2i}(0)} \frac{N_{2i}(\Delta t > 0)}{N_{12i}(\Delta t > 0)}$$

Minimum $g_h^{(2)}: 0.37(9)$

Single photon emission in the MIR

Figure references

- [1] C. Grivas, "Optically pumped planar waveguide lasers, part i: Fundamentals and fabrication techniques", Progress in Quantum Electronics, vol. 35, 2011.
- [2] S. Signorini, "Intermodal four wave mixing for heralded single photon sources in silicon", Phd Thesis. University of Trento, 2019.
- [3] M. Borghi et al., "Nonlinear silicon photonics", Journal of Optics (IOP science), 06 2017.
- [4] I. Cerutti et al., "Engineering of closely packed silicon-on-isolator waveguide arrays for mode division multiplexing applications", Journal of the Optical Society of America B, vol. 34, 02 2017.
- [5] S. Signorini et al., "Intermodal four-wave mixing in silicon waveguides", Photonics Research, vol. 6, 08 2018.
- [6] L. Caspani et al., "Integrated sources of photon quantum states based on nonlinear optics", Light: Science and Applications, vol. 6, 11 2017.