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Introduction

Integrated single photon sources are key building blocks for on-chip quan-
tum computation, quantum information and quantum technologies in general.
Single photon states can be produced through a heralding process between cor-
related photon pairs generated via nonlinear optical processes. On-chip her-
alded single photon sources based on spontaneous four wave mixing have been
already demonstrated. The purpose of this thesis is to show the advantages and
potentialities of intermodal four wave mixing in the single photon generation
framework. The photon source is developed on a silicon chip, the ideal plat-
form for integrated nonlinear processes and scalable quantum devices, thanks
also to its mature and cheap fabrication technology. A heralded single photon
source based on a IFWM process in silicon waveguides is here demonstrated.
In the first chapter the basics of the formation and propagation of waveguide
modes are given, with a focus on optical multimode waveguides. Nonlinear
optics is then introduced with a concise overview of the main second and third
order nonlinear processes. A particular attention is paid to spontaneous four
wave mixing and its inefficiencies in view of a single photon source applica-
tion. Through this process, in fact, the signal and idler photons are generated
close to the wavelength of the pump, thus limiting the generation spectrum.
Moreover, narrow spectral post filtering is used to increase the spectral purity,
limiting the brightness and the integration of these type of sources. Intermodal
four wave mixing can be used to remove the need of tight spectral filtering and
to achieve broad band quantum light generation, from the near to the mid in-
frared.
The second chapter initially introduce some elements of photon statistics and
deals with the basics of probabilistic single photon sources. A close attention is
paid to heralded single photon sources and the experimental metrics necessary
in order to characterize their performance. The last part of chapter 2 presents a
heralded single photon source based on intermodal FWM on a SOI multimode
waveguide. A description of the chip used, which has been fabricated by the
Centre for Materials and Microsystems of Bruno Kessler Foundation (Trento,
Italy), is initially provided. Next, the experimental set-up for the source charac-
terization is described. The measurements have been carried out by dr. Stefano
Signorini and Matteo Sanna (master student) in the Nanoscience Laboratory,
in the Department of Physics of the University of Trento.



2 INTRODUCTION

The analysis I carried out on the measurements is presented in the last chapter
of this thesis. The experimental demonstration of a silicon integrated source
of heralded single photons is reported. The source exploits the intermodal
four wave mixing to generate the heralding idler in the near infrared and the
heralded signal in the mid infrared.



Chapter 1

Intermodal four wave mixing

In the first part of this chapter are laid the theoretical foundations of multi-
mode photonics in optical waveguides. In particular it is discussed the forma-
tion of waveguide modes and the subsequent propagation and light coupling
in multimode waveguides.
In the second part, after a brief introduction on nonlinear optical processes,
four wave mixing in silicon waveguides will be presented. After a focus on the
phase matching, intermodal four wave mixing is discussed.

1.1 Multimode photonics in optical waveguides

An optical waveguide is a physical structure that guides electromagnetic
waves in the optical spectrum along a certain path. Optical waveguides are
used as components in integrated optical circuits as "optical wires", thus yield-
ing an analogy with the electrical wires of the well developed microelectronics.
In the advancement of the latter, silicon has covered a central role for the last
fifty years, making accessible to a wide public low cost and high speed commu-
nication. However, notwithstanding the increasing demand of data bandwidth
and higher operation frequency, nowadays microelectronics is facing a physi-
cal limit in terms of minimum implementation size and performance. Stronger
parasitic effects in the metallic connections occur at higher bandwidth, thus
providing excessive power dissipation and signal losses. In order to overcome
this limit, a viable solution is to change the information carrier: photons in-
stead of electrons. Integrated photonics with silicon has been proved to be a
very valuable approach for this purpose in the telecommunication band [1].
Moreover silicon photonics can rely on years of microelectronics research, ex-
ploiting its mass integration and cheap fabrication. In fact the cutting-hedge
silicon-on-insulator (SOI) wafer technology happens to be the paradigm for
micro-fabrication of silicon optical waveguides [2].
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1.1.1 Formation of waveguide modes

The basic structure of a dielectric waveguide consists of a longitudinally
extended high-refractive index n2 optical medium, called the core, which is
transversely surrounded by lower index media (n1 and n3), called cladding
and substrate. The aforementioned success of silicon for the fabrication of
waveguides is also related to its dioxide (Silica) that, with its low refractive
index (∼ 1.45 at 1.55µm wavelength), is used as the cladding, surrounding
the silicon core at a higher refractive index (∼ 3.48 at 1.55µm).
A guided optical wave propagates in the waveguide along its longitudinal di-
rection thanks to this refractive index contrast. In fact the light is confined due
to the total internal reflection at the borders of the core region, propagating
through the waveguide. Therefore the waveguide is naturally associated with
a critical angle θc so that all the waveguide modes propagating with an angle
lower than the critical one will be confined, while the others will be radiated
outside the core region.

x

y
z

Figure 1.1: Planar waveguide, 3D representation with reference frame.
Reprinted from [3].

A waveguide, depending on its core area, can support one or more modes,
where the mode is a solution of the Maxwell equations for the specific waveg-
uide geometry. Each mode has a correspondence with a spatial distribution of
optical energy, whose lineshape does not change along the waveguide.
Instead of solving the Maxwell PDEs it is possible to evaluate the Helmoltz
equation, i.e. the eigenvalue problem for the Laplace operator, that using the
reference frame in Fig. 1.1, can be written as

(∇2
x y + βm)Em(x , y) =

ω2

c2
n2(x , y)Em(x , y), m= 1, 2, . . . , (1.1)

where βm is the propagation constant of the m-th waveguide mode, ω the
frequency of the wave, n(x , y) represents the spatial distribution of the refrac-
tive index and ultimately Em(x , y) is the electric field profile.
For a single mode, the field intensity decreases while propagating along the
waveguide and can be written as

Em(r,ω) = EEEm(x , y)e−αmz, where αm = 2 Im(βm), (1.2)
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is the attenuation coefficient. It is useful to rewrite

βm =
ω

v
=
ω

c
neff

m , (1.3)

where v is the phase velocity of the propagating wave and c is the speed
velocity in vacuum. The last factor, neff

m , is an effective refractive index whose
real part is just n and gives information on the phase acquired by the wave in
its propagation, while the imaginary one is proportional to the losses through
the waveguide.
Of course neff

m varies for different modes depending on the geometry of the
waveguide and electric field polarization. Given a symmetric optical waveg-
uide, i.e. with the same composition for cladding and substrate, it can be shown
that the number of supported light modes is well approximated by [4]

Nmodes =
4
π

w · h
λ2
(NA)2, NA=

q

n2
core − n2

clad (1.4)

where NA stands for numerical aperture and w, h are the width and height
of the waveguide respectively. A major distinction for modes is given by the
light polarization, that can be transverse electric (TE), i.e. with the dominant
electric field component along the x direction, or transverse magnetic (TM), so
with the dominant electric field along the y direction. Typically in integrated
photonics the geometry of the waveguide are of the type h< w, that implies a
more substantial confinement of TE modes with respect to TM.

1.1.2 Light propagation in multimode waveguides

Wavelength, polarization, waveguide geometry, core and cladding materi-
als are all parameters that influence the effective refractive index of the optical
modes. In the case of micronsize structures neff

m is largely dominated by the ge-
ometric dispersion rather than by the chromatic one. As a result, it is useful to
expand the propagation constant βm of the m-th order mode around a central
frequency ω0:

βm(ω) =
∑

k

1
k!
β (k)m (ω−ω0)

k (1.5)

where β ( j)m =
d jβm
dω j are called dispersion coefficients. These coefficients are

important in the process of identifying the dispersion properties of the waveg-
uide. For instance the first coefficient ( j = 1) gives the inverse of the mode
group velocity vg . The second term of the expansion β (2)m is called group veloc-
ity dispersion (GVD), while β (3)m is the third-order dispersion (TOD), and so on
and so forth. As anticipated, for small structures, the values assumed by the
coefficients β ( j)m are dominated by the waveguide geometry, which is of essen-
tial importance in order to tailor the propagation constant using the waveguide
dimensions. From the observation that the coefficients have a dependence on
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the order mode, it is now clear that different modes propagate with differ-
ent dispersion properties in the same waveguide, thus making the multimode
propagation a very complex and exploitable tool for the nonlinear processes
discussed in the next section.

It is now considered the excitation of the guided modes in a channel waveg-
uide. The modes of such waveguide are solutions of the wave equation Eq. 1.1,
and form a complete set. This means that any electromagnetic field incident
at the facet of the waveguide can be expressed as a linear combination of the
modes supported by the waveguide. The expansion coefficient of each mode is
proportional to the power coupled on that specific mode. Using the reference
frame in Fig. (1.2), it is considered a beam of laser light, arriving from z < 0
and impinging on the facet at z = 0.

8 Chapter 1. Multimode silicon photonics

nm lithography, with 3 µm silica as the substrate, 900 nm silica deposited via plasma-
enhanced chemical vapor deposition as the cladding, and silicon as the core material,
with variable thickness depending on the cross-section of the waveguide. The sam-
ples here used have been fabricated by the Centre for Materials and Microsystems
of Bruno Kessler Foundation (Trento, Italy).

1.1.2 Light coupling and propagation in multimode waveguides

In this section I follow the formalism used by Chang [21] 1.
Optical waveguides can support one or more waveguide modes depending on their
cross section and refractive index of the materials used in their fabrication2. When
light has to be loaded inside the waveguide structure, it can in principle excite all the
guided modes supported by the waveguide. Thus these modes propagate together
inside the optical device. Let us consider the excitation of the guided modes in a
channel waveguide by means of free-space beams or optical fibers, which illuminate
the input facet of the waveguide. The modes of a waveguide are solutions of the
wave equation Eq. (1.1), and form a complete set. As a consequence, any electro-
magnetic field incident at the facet of the waveguide can be expressed as a linear
combination of the modes supported by the waveguide, with the expansion coeffi-
cient of each mode proportional to the power coupled on that specific mode. Let us
consider the input facet of the waveguide at z = 0 and the waveguide extending
along the positive z axis, as in Fig. 1.3. Assume that a beam of laser light, arriving
from z < 0, is impinging on the facet at z = 0. Given el the radiation field of the
laser, the following relation holds

el(x, y) = ex(x, y) + ey(x, y), (1.6)

with ex/y the transverse electric/magnetic radiation field. At z < 0, neglecting
reflection and diffraction at the waveguide facet (z = 0), el consists only of the inci-
dent laser radiation. At z ≥ 0, el consists of the guided waveguide modes and the
field radiated in the cladding ex,rad and ey,rad.

x

y

core, n1

substrate, n2

cladding, n3

z

z

y

n1

n3

n2

a) b)

x

m-1

m

m+1

FIGURE 1.3: a) Schematic of the waveguide cross section and relative
reference frame. b) Ray optics representation of mode propagation
in dielectric waveguides. The higher the order mode, the higher the
number of reflections at the boundaries of the core. In the legend
is indicated the relative order mode of the three propagating modes

drawn in the form of rays.

1Please notice that in this thesis the reference frame has been changed with respect to what used in
[21], inverting the x and y axes.

2For an introduction on the formation of optical modes in waveguide, see Appendix A.

Figure 1.2: On the left hand side a schematic of the waveguide with relative
reference frame. On the right hand side a representation of the propagation
of different modes in the same dielectric waveguide. The smaller the angle
of reflection, the smaller the order mode. Reprinted from [5].

Called EEE l the radiation field of the laser, than

EEE l(x , y) = EEE x(x , y) +EEE y(x , y), (1.6)

where EEE x and EEE y are the transverse electric and magnetic radiation fields,
respectively.
Whereas for z < 0 there is only laser radiation (neglecting reflection at the
facet), for z ≥ 0 El consist of the sum of the guided modes plus a contribution
from the fields radiated in the cladding, namely E rad

x and E rad
y .

At the facet the field amplitudes for TE and TM polarization can than be written
as

Ex ,y(x , y) =
∑

m

Ax ,y
m ψ

x ,y
m (x , y) + E rad

x ,y (1.7)

where ψx ,y
m is the field profile of the m-th mode with the respective po-

larization (x for TE or y for TM). The coefficients Ax
m and Ay

m are the overlap
integral that quantify the field matching between the incident radiation and
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the ψx ,y
m mode:

�

�Ax ,y
m

�

�

2
=

�

�

�

�

∫∫

dx dy [Ex ,yψ
∗ x ,y
m ]

�

�

�

�

2

�

∫∫

dx dy |ψx ,y
m |2

�2 (1.8)

where the integration is made over the whole space. A quite useful param-
eter that provides an intuitive information about the coupling efficiency for
separate modes is instead the normalized power overlap integral

Γ x ,y
m =

�

�

�

�

∫∫

dx dy [Ex ,yψ
∗ x ,y
m ]

�

�

�

�

2

�

∫∫

dx dy |ψx ,y
m |2

��

∫∫

dx dy |Ex ,y |2
� (1.9)

Since E rad
x and E rad

y radiate away after a short distance in the following
they are neglected. Then, with a proper normalization of the fields and the
waveguide modes ψx ,y

m , it is possible to rewrite Eq. (1.7) as

Ex ,y(x , y) =
∑

m

Æ

Γ
x ,y
m ψx ,y

m (x , y) . (1.10)

As per definition, with this normalization
∑

m Γ
x ,y
m = 1, which is helpful for

the implementation and simulation of the higher order mode coupling tech-
niques.
In a more intuitive interpretation, the overlap integral quantifies how much
the two field profiles involved in the calculation are similar: in fact the overlap
integral has a maximum when the two profiles are identical. This implies that
the more the field profile at the input of the waveguide resembles the profile
of a given mode, the more the coupling of that mode is good.

The problem of reflection has not been considered so far, but the abrupt
change of refractive index at the beginning and end of optical waveguides gives
rise to a Fabry-Perot oscillation. Like in a cavity the light is continuously re-
flected back and forth at the input and output facets of the waveguide. From
the transmission coefficient of the Fabry-Perot interferometer, it is possible to
write the F-P response for a mode order m, propagating with a wavelength λ
at the position z, as [6]

Am(λ, z) =
(e−αmz − eRm)2

(1− eRm)2 + 4eRm sin2(Φm/2)
(1.11)

where Φm is the phase acquired in one round trip and, given Rm the reflec-
tion coefficient at the waveguide/air interface, eRm = Rme−αmz.
Considering also this internal reflection the resulting field profile propagating
in the waveguide, for TE or TM polarization, can be written as

EEEwg(x , y, z;λ) =
∑

m

Æ

Γm(λ)
Æ

Am(λ, z)EEEm(x , y) , (1.12)

where, as before, m runs over all the modes supported by the waveguide.
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The control of the light propagating inside an optical waveguide is required
for all the applications involving integrated photonic circuits. This can be
achieved directly on-chip using a device called directional coupler (DC) [7].
This device consists simply of two parallel waveguides with a small gap in be-
tween: when two waveguides are placed sufficiently close, the evanescent field
from one waveguide overlaps with the field of the other, yielding a power ex-
change between the two waveguides. This is a powerful tool in order to control
the modes excitation in a multimode waveguide. For example, if a single mode
waveguide is placed close to a waveguide with different geometry, it is possible
to excite selectively one of the supported higher order modes.

1.2 Four wave mixing in optical waveguides

1.2.1 Nonlinear optical processes

Nonlinear photonics is the branch of optics that describes the behaviour
of light in nonlinear media, that is, media in which the polarization density P
responds non-linearly to the electric field E =

∑

i Eiâi of the light. The non-
linearity is typically observed at very high light intensities such as those pro-
vided by lasers. At low optical powers the relation between these two quanti-
ties is

P= ε0χ
(1)E= ε0

∑

i j

χ
(1)
i j Eiâ j (1.13)

where ε0 is the vacuum permittivity and χ (1) is the first order susceptibil-
ity, a second rank tensor. When the input optical power increases this linear
relation does not hold anymore. Moreover, in a semiconducting material free
carriers and nonlinear optical effects can be important, inducing the introduc-
tion of an additional term in the polarization vector, which must be rewritten
as [8]

P= PL +δP+ PN L, (1.14)

where PL is the same as in Eq. (1.13), i.e. the linear polarization, δP is due
to linear first-order processes associated with free carriers, while PN L is due to
nonlinear optical effects. The latter can be expanded as a series for sufficiently
weak optical fields

PN L = P(2) + P(3) + · · ·= ε0

�

χ (2) : EE+χ (3)
... EEE+ · · ·

�

, (1.15)

with P(2), P(3) and χ (2), χ (3) second and third order polarization vector and
susceptibilities, respectively. The absolute value of nonlinear susceptibilities
decreases with the order of the process, implying the necessity of a stronger
field to achieve third order processes, with respect to second order ones. In
general χ ( j) would be a tensor of rank ( j + 1), but for isotropic media (such
as silicon dioxide) they can be regarded as scalar quantities. Silicon, however,
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is not amorphous and has a centrosymmetric crystalline structure. This type
of symmetry prevents the existence of even order nonlinearities, still allowing
odd order ones.

Second order nonlinear processes

The second order is the lowest order for a nonlinear process in a non cen-
trosymmetric medium and, although not present in integrated silicon photon-
ics, second order processes have a whole lot of experimental applications. Let
us consider two optical fields (having frequencies ω1 and ω2) with equal am-
plitudes interacting in a medium, let E1 and E2 be the respective electric fields,
the second order polarization vector can then be expressed as [8]

P(2)(r, t) =ε0χ
(2) :

�

E1(r,ω1)E1(r,ω1)e
−i2ω1 t + E2(r,ω2)E2(r,ω2)e

−i2ω2 t
�

+ε0χ
(2) :

�

2E1(r,ω1)E2(r,ω2)e
−i(ω1+ω2)t

�

+ε0χ
(2) :

�

2E1(r,ω1)E
∗
2(r,ω2)e

−i(ω1−ω2)t
�

+ε0χ
(2) :

�

E1(r,ω1)E
∗
1(r,ω1) + E2(r,ω2)E

∗
2(r,ω2)

�

+ c.c.

The terms of the first line gives origin to SHG (second harmonic genera-
tion), where two photons with the same frequency are interacting within a
nonlinear medium to generate a new photon with twice the energy of the in-
cident photons. The term of the second line, instead, refers to SFG (sum fre-
quency generation). In this case two photons with different frequencies ω1

Figure 1.3: Virtual state diagram of the second-order processes whose de-
scription is given by the first three terms of P(2). From the left: SHG, SFG,
and DFG. Reprinted from [8].

and ω2 annihilate to produce the third photon with frequency ω1 +ω2. In
analogy with SFG the third line represents DFG (difference frequency genera-
tion), where the generated photon has a frequency ω1 −ω2. Lastly the fourth
term represents optical rectification (OR), i.e. a process that gives rise to the
generation of a DC component of the polarization.

Third order nonlinear processes

Third order nonlinear processes consists of the superposition of three waves
(E1, E2, E3), that generates a fourth one. Following the approach used for
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the second-order case, the polarization vector P(3)(r, t) can be written as the
summation of various terms, each one corresponding to different processes
[9]:

P(3)(r, t) = ε0χ
(3) ...

�

E1(r,ω1)E1(r,ω1)E1(r,ω1)e
−i3ω1 t

+ 3E1(r,ω1)E1(r,ω1)E2(r,ω2)e
−i(2ω1+ω2)t

+ 3E1(r,ω1)E1(r,ω1)E
∗
2(r,ω2)e

−i(2ω1−ω2)t

+ 6E1(r,ω1)E2(r,ω2)E3(r,ω3)e
−i(ω1+ω2+ω3)t

+ 6E1(r,ω1)E2(r,ω2)E
∗
3(r,ω3)e

−i(ω1+ω2−ω3)t

+ 3E1(r,ω1)E
∗
1(r,ω1)E1(r,ω1)e

−iω1 t

+ 6E1(r,ω1)E2(r,ω2)E
∗
2(r,ω2)e

−iω1 t
�

+ c.c.

(1.16)

For sake of clarity, in this formula the permutation of the photon indices
(i.e. of the waves) has been omitted.
In analogy with SHG, the first term is the third harmonic generation (THG),
that refers to the generation of one photon at a 3ω1 frequency, after the anni-
hilation of three photons atω1. The second to fifth elements of the summation
are responsible for four-wave mixing (FWM), where four photons combine to
give rise to the generation of new harmonics. Various combinations of this
type are possible, but the most common is the one shown in Fig. 1.4. Here the
annihilation of two incident photons, the pump photons, generate two other
frequencies, the idler and the signal photons. The sixth term of the summation

Figure 1.4: Virtual state diagram of some third-order nonlinear processes.
From the left: THG, FWM, and SPM. Reprinted from [8].

in the P(3)(r, t) expression, is the one responsible for both self-phase modula-
tion (SPM) and TPA (two-photon-absorption). In particular SPM is related to
the real part of the third-order susceptibility, while TPA is related to the imagi-
nary part of χ (3). The last term of Eq. (1.16) is responsible for the cross-phase
modulation (XPM).
It should be noticed, en passant, that so far only electronic contributions to
third-order nonlinear susceptibility have been considered. However, in gen-
eral one should also consider the role of phonons in order to get a correct χ (3).
This contribution can be represented by the Raman susceptibility χ (3)R , which
involves Raman optical phonons [8]. In this framework, additional terms are
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present in the polarization vectors, thus increasing the zoo of third-order non-
linear processes.

The large family of optical nonlinear processes can be grouped into two
main categories, parametric and nonparametric processes. A parametric pro-
cess is a process in which the initial and final quantum mechanical states of
the system are identical [10]. For this reason the initial energy is conserved in
the form of photons and, in addition, also momentum and angular momentum
are not transferred from or to the material medium.
In contrast, a nonparametric process is a process in which the energy can be
exchanged with the material also through other forms, like heat or sound. In
general parametric processes can always be associated with a real suscepti-
bility, on the contrary, nonparametric processes are described by a complex
susceptibility. All the second and third order processes described above are
parametric, except the ones including phonons and TPA, in which photon en-
ergy goes into the excitation of free carriers.

As for third order nonlinearities in silicon, four-wave-mixing is the most
studied process since it can be used for a wide range of applications, such as
entangled photon generation, wavelength conversion, optical phase conjuga-
tion and optical isolation [11, 12, 13]. In the following the most common FWM
interaction will be taken into consideration, i.e. the previously shown process
in which the two input photons are annihilated to generate an idler-signal pair
(Fig. 1.5).

ω

ω

ω

ω

p1

p2

s

i

FWM 
waveguide

Figure 1.5: Schematization of a four wave mixing process: the two dif-
ferent pump photons are injected from the facet of the waveguide and are
subsequently converted into the signal and idler frequencies.

When the two pump frequencies are equal, the FWM process is called de-
generate FWM (DFWM). There is an additional distinction based on the pres-
ence or not of a stimulating signal along with the pump. When at the input
of the system only the pump waves are provided, the FWM can spontaneously
generate both the idler and the signal waves, and the process is called spon-
taneous FWM (SFWM). When, instead, together with the pump, also a stim-
ulating signal is provided at the frequency of the signal or of the idler, the
process is called stimulated FWM (sFWM). While the latter can be described
with a classical electromagnetic theory, the former requires a quantum me-
chanical description, being stimulated by the vacuum quantum fluctuations.
An important feature of spontaneous FWM is that the generated idler and sig-
nal photons are always emitted simultaneously in pairs and their degree of
correlation depends on the bandwidths of both the pump (ωp1, ωp2) and the
generated photons themselves (ωs, ωi). This characteristic lays at the basis of
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the use of FWM for the generation of entangled and single photon states. For
future reference, it is called ’idler’ the photon at higher frequency and ’signal’
the photon at lower frequency.
Of course the generated bandwidth must comply with energy conservation,
that one can write as

ħhωp1 +ħhωp1 = ħhωs +ħhωi. (1.17)

However that is not the only constraint, in fact the process is not indepen-
dent of the phase of the waves involved: the generated waves in the medium
add up constructively if they are properly matched in phase. The phase match-
ing condition basically correspond to the momentum conservation as follows

kp1 + kp2 = ks + ki. (1.18)

It is noteworthy that these nonlinear processes can occur even if Eq. (1.18)
is not satisfied. In fact the total momentum conservation (and maximum FWM
efficiency) is achieved through particular techniques that phase match the
waves. Otherwise, the bigger the phase mismatch

∆k = kp1 + kp2 − ks − ki, (1.19)

the lower the generation efficiency.

1.2.2 Four wave mixing phase matching

One can develop the classical theory of FWM in waveguides, starting from
the wave equation Eq. (1.1) and taking into account also the nonlinear polar-
ization. As it turns out, PN L has the role of a source that radiates in a linear
medium of refractive index n:

∇2E(r,ω) +
ω2

c2
n2E(r,ω) = −

ω2

ε0c2
PN L(r,ω). (1.20)

Developing further the theory, it can be shown that the efficiency η of stan-
dard and spontaneous FWM scales with the phase mismatch as [5]

η∝ | fp1p2si|2 L2 sinc2
�

∆k
L
2

�

(1.21)

where L is the nonlinear medium length, fp1p2si is the mode field overlap,
with p1, p2, s, i indicating, respectively, the mode orders for the two pump
photons, the signal, and the idler photons.
Since the nonlinear waves can interact constructively only for a limited length
in the medium, it comes naturally, starting from the previous expression, to
introduce a coherence length for the process as

Lcoh =
π

∆k
. (1.22)

Lcoh indicates the length over which the nonlinear interaction is construc-
tive. In other terms, beyond this length the pump and the generated wave get
out of phase when a phase mismatch ∆k is present.
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For sake of completeness, it is convenient to point out that the phase mis-
match used above is the sum of a linear contribution, given by Eq. (1.19), and
a nonlinear one ∆kN L. This last nonlinear term quantifies the phase contribu-
tion to ∆k due to the self-phase modulation (SPM) of the pumps and can be
written as

∆kN L = γP1PP1 + γP2PP2, (1.23)

where γP1 and γP2 are nonlinear coefficients for the two pumps, and PP1, PP2

are the powers of the two pumps. The phase induced by SPM becomes im-
portant only when very high pump intensities are involved, thus with small
cross-section waveguides or with high peak powers. Based on the fact that
multimode waveguides are characterized by large cross-sections and low in-
tensities, from here on this contribution will be neglected.

Before introducing intermodal four wave mixing it is worth making fur-
ther phase matching considerations. The phase matching issue arises from
the chromatic dispersion of the medium, by which the refractive index of the
medium increases nonlinearly and monotonically with the frequency, namely
k(ω) = n(ω)ω/c.
It has been already discussed the possibility to act on the geometry of the
waveguide in order to tailor the dispersion experienced by the guided light.
Using the propagation constants, the phase mismatch (k ≡ β) for a single
mode DFWM process can be written as

∆β = 2β(ωp)− β(ωs)− β(ωi). (1.24)

One can then Taylor expand the propagating constants around the fre-
quency ωp, as per Eq. (1.5). Since all odd terms of the expansions cancel
each other out, it is straightforward to demonstrate that the phase mismatch
results

∆β = −β2(ωp)∆ω
2 −

1
12
β4(ωp)∆ω

4 − . . . , (1.25)

where ∆ω=ωi −ωp =ωp −ωs. As a first approximation one could think
of achieving perfect phase matching with β2 = 0. But in this case also the small
negative nonlinear contribution given by SPM would not allow a total phase
matching: in order to get ∆β = 0 the β2 term should be negative, fact often
referred to as anomalous GVD [14].
Now, from Eq. (1.21) one can consider∆kmax =∆βmax = 4/L as the maximum
tolerable loss of efficiency. Taking only the first term in Eq. (1.25), this result
will lead to an expression that links L and the bandwidth of the process:

BW ≈

√

√

√
∆βmax

β2ωp
=

√

√

√
4

Lβ2ωp
. (1.26)

Obviously as soon as the detuning∆ω increases, also higher order terms in
the expansion become essential to perform a correct phase matching (PM). In
this context comes up naturally a distinction between the so called continuous
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band phase matching and discrete band phase matching. The former arises when
the phase matching band is centered at the pump wavelength. The discrete
band phase matching, instead, happens when the PM bandwidth is centered
at the phase matching wavelength. Typically, in this case, the detuning is so
big that is necessary to consider the first two terms in Eq. (1.25) and the phase
matching is achieved when β2(ωp) and β4(ωp) have opposite sign, thus using
higher order term to compensate the phase mismatch carried by the GVD term.
This implies that GVD compensation can be achieved only far from the pump
wavelength, making this process not suitable for all those applications requir-
ing a tunable wavelength conversion.
An important limit of single mode FWM is that the β2 value is critically depen-
dent on the geometry of the waveguide, which makes the engineering of the
dispersion a non trivial task. As a matter of fact, as shown in Fig. 1.6 a), a
small variation of the waveguide affects critically the phase matching.3.6. IMFWM in silicon waveguides: theory and experimental demonstration 51
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FIGURE 3.9: a) β2 as a function of the wavelength for different waveg-
uide widths. The β2 value is critically dependent on the geometry
of the waveguide, which makes the engineering of the dispersion a
non trivial task. b) Phase mismatch as a function of the idler wave-
length for a 2 µm wide waveguide with 243 nm height. The ∆k calcu-
lated considering the full effective indices of the waves (dashed line)
is compare with those calculated with the dispersion compensation
(β2− β4). The phase matching is calculated around 1.19 µm by the full
effective index treatment with 1.55 µm pump wavelength, while the
dispersion compensation method fails to calculate its spectral posi-
tion with the same pump wavelength (purple line). The phase match-
ing in the expected position is recovered with 1.94 µm pump wave-

length (red line).

affects critically the phase matching. These examples show that the phase matching
based on the higher order terms is efficient, but is affected by errors in real devices.

Thus far we have considered only the first order waveguide mode, which forces
the engineering of the GVD terms. However, it is possible to use different prop-
agation constants of different order modes to earn one more degree of freedom in
designing the phase matching. This is the case of intermodal phase matching, where
higher order waveguide modes are used, with their different effective index pro-
files, as shown in Fig. 3.10. This allows tuning the propagation constant of each
wave independently, thus improving the control on the phase matching condition.
Up to now, intermodal FWM has been demonstrated only in high-order-mode op-
tical fibers [55, 69, 70] and in photonic crystal optical fibers [71]. The only example
of intermodal phase matching in an integrated device was reported with Brillouin
scattering [72], but FWM has never been investigated. With our work we reported
the first experimental demonstration of intermodal FWM in waveguides [73], which
was rapidly followed by several other works exploiting this kind of phase match-
ing approach for FWM in integrated platforms [74, 75, 76, 77]. The full description,
analysis and experimental demonstration of intermodal FWM are reported in the
next section.

3.6 Intermodal four wave mixing in silicon waveguides: the-
ory and experimental demonstration

This section has been largely derived from my work in Ref. [73].

Figure 1.6: a) GVD dependence on the wavelength, for different waveguide
widths. b)∆k vs idler wavelength. Simulation for a 2µm wide and 243 nm
high waveguide. It is compared the phase mismatch calculated with the
dispersion compensation and from Eq. (1.24). Reprinted from [5].

Moreover, when considering a practical implementation, the GVD terms
are not a reliable tool, indeed the higher order terms of the expansion in Eq.
(1.25), are much more important than what expected, as can be seen in Fig.
1.6 b). Here, the dispersion compensation method fails to calculate the phase
matching position using the correct 1.55µm pump wavelength, but the PM in
the expected position is recovered with a 1.94µm wavelength.
A viable solution in order to face these drawbacks, is to take advantage of the
higher order modes propagating in a multimode waveguide. Using different
waveguide modes gives one more degree of freedom to engineer the phase
matching. This is the case of intermodal phase matching, where different order
waveguide modes are used.
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1.2.3 Intermodal four wave mixing

Four wave mixing is the most studied and exploited nonlinear process in
silicon photonics, and it is usually used in its intramodal configuration, i.e.
using only one waveguide mode. Intermodal FWM (IFWM in the following),
instead, is based on the excitation of different order modes, enabling func-
tionalities that are not easily accessible to single mode FWM: thanks to this
process it is possible, for instance, to generate light with highly controllable
wavelengths and bandwidth, enabling spectral conversions which can link the
NIR with the MIR part of the spectrum. These results are extremely attractive
for integrated photonics, which is striving for devices able to perform all opti-
cal wavelengths conversion for signal processing.
In addition to the anticipated advantages of intermodal FWM, there is also the
fact that anomalous GVD dispersion is not needed in order to achieve phase
matching, as instead happens for intramodal FWM [14]. This results in an
easier handling of the phase-matching condition: the IFWM exhibits higher
flexibility, larger spectral conversion, and easier phase matching.

For the control of the phase matching condition it is essential to engineer
the index dispersion through the geometry of the waveguide. Moreover, it is
possible to select the effective index value of the propagating wave by excita-
tion of a specific optical mode, as shown in Fig. 1.7.

super-modes that are confined on a single waveguide as the
conventional modes. A first demonstration of this possibility
is given in [9] where five modes were supported in five coupled
single-mode waveguides realized in SOI with a maximum cross-
talk as low as −30 dB for 1 μm period and −20 dB for 0.8 μm
period. A more compact solution is realized in [10], which
demonstrates five modes (three TE and two TM) on three
coupled waveguides with an adiabatic spacing widening from
100 to 800 nm to enable separation of the waveguides for de-
multiplexing.

This paper aims to investigate the super-mode domain to
understand its performance in terms of crosstalk and scalability.
To this aim, arrays of closely spaced waveguides are considered.
A theoretical approach is proposed for understanding the con-
ditions (i.e., geometrical rules) governing the super-modes in
waveguide arrays and their impact on the mode distribution.
First, the theory of MDM, space division multiplexing
(SDM), and Bloch modes are consolidated and discussed for
uniform arrays of waveguides (UAW). Then, the impact of per-
turbing the uniformity of UAW is assessed, making it possible
to derive the set of conditions that regulate the different mode
propagation mechanisms. Finally, such results are applied to
design nonuniform arrays of waveguides (NAW) with the ob-
jective of exciting quasi-orthogonal super-modes with low
crosstalk.

The presented theoretical approach is supported by the ex-
perimental results obtained on a SOI-based UAW, perturbed
UAW, and NAW [11,12]. The final outcome of the paper
is a comparison with state-of-the-art MDM, indicating that
the proposed closely spaced NAWs achieve higher scalability
and lower crosstalk on a wider band.

2. UNIFORM ARRAY OF WAVEGUIDES

This section focuses on arrays of identical and equally spaced
waveguides, i.e., UAW. In particular 220 nm high SOI strip
waveguides covered by a silica cladding are considered for op-
erations in C-band. To understand how the optical signal prop-
agates in a UAW, let us first review the case of a single
waveguide in isolation, as shown in Fig. 1(a). Depending on
the waveguide width, one or multiple propagation modes
can be supported. More specifically, for a single waveguide
in isolation, the variation of the effective refractive index
(neff ) of guided modes as a function of the width is shown
in Fig. 2. For small width (i.e., below around 500 nm) the
waveguide supports only one TE propagation mode, i.e., sin-
gle-mode or monomodal condition. As the waveguide becomes
wider, further modes start to be guided, leading to the multi-

mode condition. Also, TM modes can be excited (e.g., TM0 in
Fig. 2) [13].

When other waveguides are placed in parallel realizing a
UAW of N identical and equally spaced waveguides, as shown
in Fig. 1(b), the mode distribution and the effective indices
change as a function of the waveguide center-to-center distance
(i.e., period) and spacing (i.e., gap). The effective indices for a
UAW constituted of five (N � 5) 440-nm wide waveguides are
shown in Fig. 3 as a function of the waveguide gap or, equiv-
alently, of the waveguide period computed between the center
position of two waveguides. For a null gap, the UAW degen-
erates into a single waveguide that is 440 · N � 2200 nm wide
[Fig. 1(a)]. Thus the modes have the effective indices, as shown
on the right border of Fig. 2. This represents the conventional
MDM case. When increasing the waveguide gap up to around
the waveguide width, the effective indices of the modes are still
different; more specifically the higher-mode indices sharply
drop with the gap. When further increasing the gap, the
UAW behaves as a set of isolated waveguides; thus the effective

(a)

(b)

Fig. 1. Transverse UAW section: (a) from a single waveguide to
(b) an array of identical equally spaced waveguides.
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Figure 1.7: Effective indices as a function of the width of the TE modes and
the fundamental TM mode supported by a 220nm high SOI strip waveguide
with silica cladding. Reprinted from [15].

As a consequence, in contrast with intramodal FWM, the effective pump in-
dexes neff for a DFWM process are not the same in general. Since the wavevec-
tor depends on the index as k = ω

c neff, this introduce a major difference in the



16 CHAPTER 1. INTERMODAL FOUR WAVE MIXING

conservation constraints
¨

ωp +ωp =ωs +ωi

kp1 + kp1 = ks + ki
(1.27)

In fact, the linear phase mismatch in a multimode waveguide, not consid-
ering nonlinearities due to the SPM of the pumps, becomes

∆kL =
ωp

c
np1

eff(ωp) +
ωp

c
np2

eff(ωp)−
ωs

c
ns

eff(ωs)−
ωi

c
ni

eff(ωi), (1.28)

where p1, p2, i, s refer to the order modes of the two pumps, the signal
and the idler, respectively.
As already pointed out, the most common scenario for the modes configuration
is p1 = p2 = s = i, that correspond to standard intramodal FWM. For IFWM,
instead, the more feasible are p1 = p2 6= s = i and p1 = s 6= p2 = i. The first
one refers to the case of the two pumps on one mode and the signal and idler
on another one, while in the latter one pump has the same mode of the signal,
and the other pump propagates on the same mode of the idler.

In order to deal with different order modes, for the group dispersion terms
it is used the notation βn,m, where the index n identifies the n-th term of the
Taylor expansion, while m is the mode order.
Let us briefly consider the mode combination p1 = p2 6= s = i for DFWM.
Expanding the dispersion constants around ωp and truncating it at the fourth
order coefficient, the phase mismatch can be written as

∆β = 2(β0,p1 − β0,s)− β2,s∆ω
2 −

1
12
β4,s∆ω

4 (1.29)

This modes combination has many similarities with the intramodal case,
the main difference being the presence of the first term. As a consequence of
this term the phase matching cannot be achieved at small values of detuning
(∆ω∼ 0), as instead happens in the intramodal case.

For p1= s 6= p2= i, we consider again the case of degenerate FWM (ωp1 =
ωp2 =ωp) and an expansion aroundωp. The phase mismatch up to the fourth
order dispersion term is

∆β = −(β1,i − β1,s)∆ω−
1
2
(β2,i + β2,s)∆ω

2

−
1
6
(β3,i − β3,s)∆ω

3 −
1

22
(β4,i + β4,s)∆ω

4.
(1.30)

As a first approximation let us consider just the first line in Eq. (1.30). In
analogy with the intramodal case, the first term in the equation, which is just
the group velocity mismatch of the output signals, could be compensated by
the second order term of idler and signal. In a situation where β1,s > β1,i the
second order term does not need to be negative, which means that anomalous
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GVD is not necessary. On the other hand if β1,s < β1,i, than β2 needs to be
negative for at least one of the two output modes.
Again as soon as the detuning ∆ω increases, the third and fourth order terms
in the expansion become essential to perform a correct PM.
Fig. 1.8 compares the frequency dependence of the idler generation efficiency,
from Eq. (1.21), for the intramodal and intermodal DFWM. When no compen-

Fig. 2.
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Figure 1.8: Normalized idler generation efficiency vs wavelength. Pump
photons at 1.55µm, comparison of the 1111TE intramodal combination
and the 1221TE intermodal one. Simulation for a 3.5µm wide and 243nm
high silicon waveguide. Reprinted from [7].

sation is present for the intramodal case, the IFWM exhibits a discrete phase
matching that can be tuned far from the pump. Intramodal FWM, instead,
displays phase matching only close to the pump wavelength.

The mode field overlap, already introduced in Eq. (1.21), reveals itself as a
powerful tool to quantify the coupling between the field involved in the FWM
process. Furthermore, it is a useful parameter to estimate confinement, re-
sulting in a higher value when the modes are more confined in the waveguide
core. For the aforementioned intermodal configuration (p1, p2, s, i), it is given
by [7]

fp1p2si =

∫

A0
Ep1(r,ωp1)Ep2(r,ωp2)E∗s (r,ωs)E∗i (r,ωi)A

∏

k=p1,p2,s,i

�

∫

A∞
n2

wg(r,ωk)|Ek(r,ωk)|2A
�

1
2

, k = p1, p2, s, i,

where r is the spatial coordinate in the cross-section plane, A0 is the waveg-
uide cross section itself and A∞ is the whole transverse plane. The waveguide
refractive index is nwg , while Ek is the mode field of each wave. The form of
fp1p2si suggests that not all the modal combinations are possible, since an odd
integrand at the numerator would result in a zero efficiency process.
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From the works of Signorini et al. [5, 7], it is clear that involving higher or-
der modes in the FWM process affects negatively the efficiency of the process,
which is reduced by the smaller mode field overlap, with respect to the in-
tramodal case. It is shown that, in terms of efficiency, the intermodal combi-
nations perform better when the combination is symmetric. When, instead,
one mode is different from the others, the relative efficiency decreases dra-
matically. Moreover, comparing TM polarization combinations with respect to
the TE case, it can be seen that the latter are more efficient due to their larger
mode area.
Notwithstanding its lower efficiency with respect to intramodal FWM, the inter-
modal approach enables larger spectral translations and opens new function-
alities for technologies involving higher order modes. In the aforementioned
works, in fact, it is also observed that, as the pump wavelength is increased,
the spectral position of the phase matching condition moves towards longer
wavelengths.



Chapter 2

Heralded single photon sources

At the beginning of this chapter are briefly discussed the basics of single
photon sources, with a particular attention on heralded sources. Next, the ma-
jor experimental parameters for the characterization of heralded single photon
sources are summarised. In the end there will be a presentation of the chip that
implements the heralded single photon source whose results are shown in the
next chapter, as well as the experimental set-up used for its characterization.

2.1 Basics of single photon sources

Quantum mechanics is present at the roots of many scientific and techno-
logical advancements that have had an indelible effect on our society, including
high-performance computation, secure communication, high-sensitivity metrol-
ogy and sensing. The major driver of the current research into single-photon
sources is probably the exponential growth of the field of quantum-information
over the last decades. Research has shown that using quantum objects in order
to encode, manipulate, and measure information allows some computational
tasks to be performed more efficiently than thought possible using classical
objects [16, 17, 18]. Photonic qubits, in analogy with the classical bits, are
the basic unit where information can be encoded. Information can be written
in the quantum state exploiting the photon degrees of freedom (polarization,
momentum, energy, etc.) [19]. Moreover, since photons interact weakly with
their environment over long distances, they are affected by limited decoher-
ence, enabling room temperature operation. A further non-negligible advan-
tage in the quantum information framework, is that photons can be transmitted
within the already world-wide deployed optical fiber network.
Quantum computing architectures and hardware platforms are highly demand-
ing in terms of components, requiring thousands of components to work prop-
erly. Therefore developing such technologies on integrated photonic chips is
key in order to move them outside the laboratory. Silicon photonics is the ideal
solution thanks to its mature fabrication technology, which allows high density
device integration. The main components of quantum photonic systems, such
as interferometers, beam splitters, phase shifters, etc. are all now realisable in
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an integrated form [20]. As for sources of non-classical light, single photons
can be generated in different ways, e.g. atom-like emitters, as trapped ions or
quantum dots, or heralded sources based on correlated photon pairs [21].

The ideal single photon source would be one for which a single photon is
emitted at any arbitrary time defined by the user (i.e. the source is determin-
istic, or “on-demand”), with a probability of emission of 100%. Moreover, the
probability of multiple-photon emission should be 0%: this concept is often
referred to as the "photon gun" [22], where by pressing a button a single pho-
ton is emitted instantaneously with unit probability. Carrying on the analogy,
the bullets should be identical from shot to shot: in an ideal single photon
source, the emitted photons are indistinguishable [23]. In real-world sources,
deviations from these ideal characteristics are always present. Deterministic
sources, that are often based on atom-like emitters, are in general more effi-
cient than probabilistic ones, but despite the high performance of such sources,
their integration in a photonic integrated circuit is still an open issue, due to
high coupling losses, not reproducible fabrication and the need of cryogenic
working temperatures [24].
A valid alternative which solves these issues is the probabilistic heralded sin-
gle photon source. This source rely on photons created in pairs via parametric
downconversion (PDC) in bulk crystals and waveguides, or four-wave mixing
(FWM) in optical waveguides. These sources are said to be probabilistic since
the creation of photon pairs is not guaranteed, but happens with a certain prob-
ability. However, because the photons are created in pairs, the detection of one
photon, the herald, can be used to confirm the creation of the other photon,
the heralded one, that can be used as a single photon in the quantum device.

2.1.1 Elements of photon statistics

Let us consider an ensemble of photons, each one characterized by a photon
state (with a defined polarization, frequency and spatial mode): if all photons
occupy the same state, than this ensemble is represented by a pure state. A
general pulse of light in quantum optics can be a linear combination of several
pure states: in the following such states are identified by |n〉. Here, n denotes
the number of photons in this particular state (called Fock state), that is an
eigenstate of the single-mode number operator n̂, whose eigenvalue is n. For
future reference it is useful to introduce the photon number creation (â†) and
destruction (â) operators as

â† |n〉=
p

n+ 1 |n+ 1〉 ,
â |n〉=

p
n |n− 1〉 ,

(2.1)

from which it is straightforward to see that n̂= â†â.
A parametric photon pair source generates quantum states that, if the two
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photon beams emitted are on a single-mode, can be written as

|ψ〉pair =
∞
∑

n=0

ξn |n〉a |n〉b , (2.2)

where a and b identify the two beams emitted and |ξn|2 is the probability
P(n) to find n photons both in a and b. What is expected from a spontaneous
parametric process is that the number of photons in the two beams is the same.
As a consequence an ideal single-mode photon pair source should produce a
quantum state with P(1) = 1, i.e. |ψ〉pair = |1〉a |1〉b. In real-world sources,
however, the probability of non emitting at all (P(0) 6= 0) or to emit multi-
photon pairs (P(n> 1) 6= 0) is far from being negligible.
To tackle this issue the heralding process is introduced: the intrinsic temporal
correlations of paired photons are used to kill P(0) and enhance the P(1). The
quantum state of a single photon source can be described analogously to the
photon pair source using again P(n) as the probability to detect n photons in
the output beam. Since through the heralding process the probability of de-
tecting zero photons is so low, the probability of single detection P(1) increases
dramatically (Fig. 2.2) with respect to the mere observation of a single beam
of the photon pair source (Fig. 2.1).

0 1 2 3 4 5 6 7

Figure 2.1: Normalized photon number
distribution for a single beam of the pho-
ton pair source.

0 1 2 3 4 5 6 7

Figure 2.2: Normalized photon number
distribution for the heralded beam of the
photon pair source.

A useful tool in order to quantify the multi-photon emission probability
is a time and position correlation function that is called second order coher-
ence, or g(2). The g(2) measures the statistics of the source, taking into account
the spatial and temporal correlations between the emitted photons. Since the
correlation function is an ensemble average, when a stationary source is con-
sidered (it is the case of a pump given by a continuous wave laser), the only
information that matters about the time of the two modes is their difference
∆t. Moreover, for photon sources only one mode is measured and at the same
position. In this context the second order coherence can be written as [25]

g(2)(∆t) =
〈â†(t)â†(t +∆t)â(t +∆t)â(t)〉

〈â†(t)â(t)〉2
(2.3)
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where the angled brackets indicate an ensemble average. When pulsed
sources are used, the time can be discretized with the pulse number, and the
g(2) is written as

g(2)[m] =
〈â†[l]â†[l +m]â[l +m]â[l]〉

〈â†[l]â[l]〉2
(2.4)

where l, m ∈ N indicate the pulse number and the ensemble average is
made over the l index. In both continuous wave (CW) and pulsed sources
cases, the non-zero delay g(2) can be rewritten as

g(2)(0) =
〈n̂(n̂− 1)〉
〈n̂〉2

=
〈n̂2〉 − 〈n̂〉
〈n̂〉2

. (2.5)

The theoretical conclusions derived from the g(2) are independent on the
pulsed or CW formalism. From now on it is used the CW notation without loss
of generality.
From Eq. (2.5), the g(2)(0) is directly related to the photon number emission
probabilities. An ideal single photon source is expected to have 〈n̂〉 = 1, that
implies a zero second order coherence.

Three regimes of statistical distributions can be associated to a light source:
Poissonian, super-Poissonian and sub-Poissonian. The distinction is defined by
the relationship between the variance and the average photon number of the
source. Once that the photon number variance ∆n2 = 〈n̂2〉 − 〈n̂〉2 is defined,
a Poissonian photon statistics corresponds to the case ∆n2 = 〈n̂〉. This is the
case of coherent light. One can rearrange Eq. (2.5) and write it in the more
suitable form

g(2)(0) = 1+
∆n2 − 〈n̂〉
〈n̂〉2

, (2.6)

from which it is clear that a Poissonian statistics implies g(2)(0) = 1, i.e. no
correlation whatsoever between the photons.
When the variance of the photon number is larger than the average photon
number, the photon statistics is said to be super-Poissonian (g(2)(0) > 1). Op-
positely, if g(2)(0) < 1 the variance is smaller than the average of the photon
number and a sub-Poissonian statistics is characterizing the light.
For a super-Poissonian light, which is the case for thermal sources, the large
variance implies that photons arrive more probably closely spaced in time
rather than far apart: it is said that they reach the detectors in bunches. The
sub-Poissonian light, on the contrary, presents an antibunching behaviour, i.e.
photons are regularly emitted in time, but never together. As a consequence
when bunching occurs the second order coherence is peaked at ∆t = 0, while
for sub-Poissonian light a dip is present for the zero-delay g(2) (Fig. 2.3).

An ideal single photon source implies g(2)(0) = 0, thus an anti-bunching
behaviour. Nevertheless a slight evidence of anti-bunching is not enough to
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Figure 2.3: Second-order coherence g(2)(τ=∆t) for various light sources,
from the left: Poissonian, super-Poissonian and sub-Poissonian. The red
balls represent a schematic photon distribution in time for that particular
g(2) curve.

claim a single photon emission. In fact, rewriting Eq. (2.5) as a function of the
number of photons in a pulse (n) we find

g(2)(0) =
〈n| n̂(n̂− 1) |n〉
〈n| n̂ |n〉2

= 1−
1
n

, (2.7)

From Eq. (2.7), the zero-delay second order coherence for a Fock state with
n = 2 photons results 0.5, thus suggesting the presence of the anti-bunching
dip even if there is multi-photon generation. Therefore, to demonstrate the
single photon emission character of a source, a g(2)(0) < 0.5 should be mea-
sured.

Experimentally, the g(2) can be measured by means of a Hanbury-Brown
and Twiss (HBT) interferometer with click/no-click detectors. In the HBT in-

Laser
BS

Timing electronics

1

2

3

4

D

D3

4

Figure 2.4: Schematics of a HBT interferometer with a generic laser beam
as input signal at port 1; in the input port 2 the vacuum field is present.
The output detection signals coming from the two detectors are analyzed
by timing electronics, such as a time tagger.

terferometer, whose setup is shown in Fig. 2.4, the single photon beam enters
from the input port 1 of the beam splitter and is then measured by one of
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the two detectors (D3 and D4) placed in the reflected and transmitted ports
(ports 3 and 4 respectively). Both the electric signals from detectors D3 and
D4, triggered by the detection of the photon beams, are then processed by the
counting electronics which stores coincidence events and their timing. The in-
tuitive concept behind the HBT experiment is that if only one photon at a time
enters the beam splitter, there is no chance that both D3 and D4 can detect it,
yielding zero coincidences at zero delay.
HBT interferometry is used to give a g(2)(∆t) estimate by applying a ∆t tem-
poral shift to one of the two detectors. Moreover, the second order coherence is
modified neither by asymmetries in the transmission and reflection coefficients
of the beam splitter, nor by the efficiencies of the click detectors.

2.2 Heralded single photon sources parameters

In this section a brief introduction to the main experimental parameters and
metrics for the characterization of heralded single photon sources is provided.

2.2.1 Purity

A major requirement for a single photon source is the purity of the gen-
erated state, that is basically the measurement of the single mode emission
character of the generated single photon. In fact, several quantum informa-
tion applications are based on the interference of two or more single photons
and, in this framework, pure states are required for optimal visibility quantum
interference [26]. Completely unentangled photons would be the perfect in-
formation carriers for these functions, but when dealing with heralded single
photon sources, an issue comes up since the photon pair is inherently gener-
ated in an entangled state. As a consequence of the detection of the heralding
photon, the heralded one is projected into a mixed state. Intuitively, purity
measures how much the photons are entangled, with P = 1 completely unen-
tangled photons and P = 0 completely entangled photons.
Purity can be defined as the inverse of the Schmidt number K [27]. Let us
consider a state |Ψ〉 identifying a composite system whose Hilbert space is
H =Hu ⊗Hv, with Hu/v Hilbert spaces of the subsystems that compose |Ψ〉.
Introducing the orthonormal basis {|ui〉} and {|vi〉}, respectively for the two
spacesHu andHv, then if |Ψ〉 is a pure state ofH , one can write

|Ψ〉=
∑

i

Æ

λi |ui〉 ⊗ |vi〉 . (2.8)

This is called Schmidt decomposition, where |ui〉 and |vi〉 are the Schmidt
modes and the λi are said Schmidt coefficients: for these coefficients applies
the relation

∑

i λi = 1. |Ψ〉 could represent a two-photon state and each sub-
system of |Ψ〉, i.e. each single-photon state, is related to one and only one
Schmidt mode.
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The degree of factorizability can be inferred looking at how many Schmidt
modes are necessary to completely describe the composed system, namely
looking at the Schmidt coefficients. For this reason the Schmidt number is
introduced as

K =
1

∑

i λ
2
i

. (2.9)

From this expression is clear that, for a completely factorizable two-photon
state (with perfectly unentangled single photons), K = 1. As already stated,
purity P is defined as the inverse of the Schmidt number, moreover a further
relation holds between K and the second order coherence [25]:

K =
1

g(2)(0)− 1
=⇒ P = g(2)(0)− 1. (2.10)

For a perfectly pure single photon state a thermal statistics is expected [28],
thus yielding a super-Poissonian behaviour of the light; a maximally entangled
photon pair, instead, is characterized by unit second order coherence.
As a consequence maximum and minimum purity are achieved when g(2) = 2
and g(2) = 1, respectively.

Eq. (2.10) is of essential importance from an experimental point of view,
in fact, the measurement of the second order coherence can be carried out
through the HBT experiment explained in the previous section. In principle, in
order to inspect the single mode character of the emitted photon, both the idler
and signal beams could be used, as long as one is taken without any heralding
from the other (Fig. 2.5). For sake of notation, this second order coherence is
called unheralded.

BS

Timing electronics

ω

ω ω

ωp1

p2 s

i

SFWM 
waveguide

Figure 2.5: Setup for the unheralded second order coherence measure-
ment. In principle the HBT interferometer could be used indifferently on
any of the two output beams of the waveguide.

For an ideal single pulsed source, the expected shape of the g(2) exhibits a
peak at ∆t = 0, which corresponds to the coincidences within the same pulse.
The peaks for non-zero delay arise, instead, because of the correlated detection
of subsequent or precedent pulses.

2.2.2 Joint spectral intensity

As mentioned in Section 1.2.1, spontaneous FWM exploits the quantum
vacuum fluctuations to seed the conversion of the pump photons into the signal-
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idler pair. In the case of SFWM in a waveguide, the co-polarised two-photon
output state can be written as [29]

|I I〉 ∼
∫∫

dωs dωi F(ωs,ωi)â
†
s (ωs)â

†
i (ωi) |0〉s |0〉i , (2.11)

where the notation of the single photon state is |ω〉q ≡ |1〉qω = â†
q(ω) |0〉,

for a photon with frequency ω in the q-th mode. The normalized biphoton
function F , or joint spectral amplitude (JSA), is a function that provides infor-
mation on the bandwidths of the photons involved in the non linear process.
Once defined α(ω), the complex amplitude of the pump spectrum centered at
ωp, the JSA can be expressed as

F(ωs,ωi) =

∫ +∞

−∞
dωα(ω)α(ωs +ωi −ω)φ(ωs,ωi,ω), (2.12)

where

φ(ωs,ωi,ω) = exp
�

i∆β L
2

�

sinc
�

∆β L
2

�

(2.13)

is the phase matching function. More suitable than the JSA, is the joint
spectral intensity (JSI), which is its modulus square: this quantity, measurable
from the field intensity, is useful in order to estimate the degree of correlation
between the signal and idler photons. From Eq. (2.12) it is clear that the JSA
(and as a consequence the JSI), takes into account all the frequencies of the
waves involved in the SFWM, thus allowing to determine the spectral distribu-
tion associated to one output, once the frequency of the other is given.
Once again a Schmidt decomposition can be made for the JSA, in order to
quantify the degree of correlation, and so the purity of the system. For single
mode emission the JSA is completely factorizable as the product of two func-
tions; if correlations are present, it is not.
Since the measurable value is the spectral intensity, a lower bound for the true
Schmidt number is calculated by considering just a singular value decomposi-
tion of the square root of the JSI.
In fact, since the modulus square of the JSA is taken, all the information on
the joint spectral phase is lost.

As shown in Fig. 2.6 the joint spectral intensity ranges from a circular shape,
that is the case in which the two-photon system is in a separable state, to a thin
line, in the case of maximum correlation.
From an experimental point of view, it is possible to approach the single mode
emission by spectral filtering. The intuitive concept is to select only certain
Schmidt modes by removing the unwanted frequency modes via band pass
filters. This process, however has to face the drawback given by the loss of
the filtered photons, that cause a serious decrease in brightness and heralding
efficiency of the source.
For these reasons, a more preferable approach is to tailor the phase matching
and pump profiles, exploiting Eq. (2.12), in order to directly engineer a JSA
that is intrinsically uncorrelated.
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states require one to measure triple coincidence events in 64 different
settings, and so on.
An alternative approach relies on demonstrating that the source is

single mode, since in this case the measurement of the heralding
photon will project the single photon into the corresponding pure
single mode70 (see Supplementary Section B). Note also that the
normalisation condition Tr r̂ð Þ ¼ 1 combined with the purity condi-
tion Tr r̂2

� � ¼ 1 implies that for a pure state, the diagonalization of
the density matrix leads to only 1 non-zero eigenvalue, that is, a pure
state can always be represented by a single-mode state in the proper
basis. A single-mode photon can be obtained via a multimode
generation process, provided that suitable filtering is applied before
detection, although at the expense of reducing the efficiency of the
source. Alternatively, single-mode emission can be obtained by
modifying the process parameters, such as the pump spectrum and
phase matching curve (see Chapter 11.2.4. in Ref. 71 for details on
heralding pure single-photon states).
The number of modes can be obtained directly by measuring the

signal-idler correlations for a specific variable. For example, the single-
or multimode character in the frequency domain can be determined
by measuring the signal/idler joint spectral distribution (JSD), that is,

the frequency of the idler given the frequency of the signal. Single-
mode emission will then be characterised by uncorrelated signal and
idler photons (Figure 3a), while correlation is an indication of a
multimode character (Figure 3b). The JSD can be obtained by
measuring, for each idler frequency, the coincidences for all the signal
frequencies. This measurement is typically obtained by exploiting
narrowband filters (able to resolve the frequency bandwidth over
which the signal and idler photons are generated), although this
typically introduces significant loss, particularly for very narrow
bandwidths. In turn, this can jeopardise the whole measurement by
requiring extremely long integration times to compensate for losses. A
possible solution is to exploit the corresponding SPDC and SFWM
stimulated processes72,73, for example, by providing as the input the
signal field at different frequencies and measuring the idler power. The
stimulated process avoids the need for single-photon detectors and
strongly reduces the measurement time. This is particularly suitable
for characterising states generated by integrated resonators, where the
very narrow linewidth requires resolutions of picometres or less and
low loss filters are generally not available. Finally, by exploiting the
known statistics of the separate signal and idler beams, one can avoid
the need for filtering the signal and idler fields, useful for very narrow
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Figure 2.6: Normalised joint spectral intensity for frequency-uncorrelated
(a) and frequency-correlated (b) signal and idler photons. The axes, in
arbitrary units, represent the frequency shift of the generated photons with
respect to the pump ωd ≡ωp. Reprinted from [20].

2.2.3 Antibunching

The unheralded second order coherence, introduced in Section 2.2.1, has
been shown to characterize a super-Poissonian behaviour for the isolated sig-
nal or idler beams. It has already been anticipated, however, that when the
heralding process is applied the g(2) exhibits the antibunching dip peculiar of
sub-Poissonian light. In a sense, heralding can be seen as a procedure to kill
the probability of detecting zero signal photons P(0).
The heralded second order coherence g(2)h is then naturally defined as the self
correlation of the signal beam triggered by the detection of its twin idler. In
order to get an experimental estimate, it is again made use of the HBT interfer-
ometer on the signal beam, but with the fundamental difference that a detector
on the idler arm is added to the timing electronics. A schematization of this
set-up is shown in Fig. 2.7.
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Figure 2.7: Setup for the heralded second order coherence measurement.
The source is based on a SFWM process in a waveguide.

Since the detection of coincidences in the signal arm is triggered only by
the detection of the herald, the g(2)h is said to be conditioned by the idler. Using
the destruction and creation operators notation, this function can be written
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as [25]

g(2)h (t1, t2|t i) =
〈â†

i â†
1â†

2â2â1âi〉

〈â†
i â†

1â1âi〉〈â
†
i â†

2â2âi〉
〈â†

i âi〉, (2.14)

where for sake of simplicity the temporal dependence of the operators is
omitted and the subscripts 1, 2 and i identify, respectively, the two signal de-
tectors and the idler. Considering a zero delay between the detection of the
idler and the signal of detector 1, which is typically the case in heralded sources
measurements, the correlation becomes a function only of ∆t = t2 − t, with
t ≡ t1 = t i.

2.2.4 Heralding efficiency

As already pointed out discussing the JSI, a high purity is often achieved by
heavy filtering of the beam sources. The drawback is the irredeemable loss of
photons, preventing an efficient heralding procedure. To quantify the quality
of the heralding procedure considering the associated losses, the heralding ef-
ficiency is introduced: this parameter is the probability to detect the heralded
photon, given the detection of the herald. In the definition of heralding effi-
ciency is necessary a term that accounts for the imperfect detection of photons
performed by the real-world detectors: the detection efficiency ηd . Identifying
the herald with the idler, it is possible to write

ηs
H =

Rsi

Riη
s
d

, (2.15)

where Rsi and Ri are the signal-idler coincidences rate and the detection
rate of the idler, respectively.
Very often the heralding efficiency is affected by losses in the instrumentation
used to characterize the source or by limited fabrication quality of the chip. In
order to get rid of these losses and focus on the source design performance, the
intrinsic heralding efficiency is introduced. By denoting with Ts the transmis-
sion of the signal by the photon source, then the intrinsic heralding efficiency
can be expressed as

ηI =
ηs

H

Ts
. (2.16)

2.2.5 Coincidence to accidental ratio

In an effort to characterize a heralded photon source, it is useful to have
a parameter which quantifies the overall coincidence detection efficiency be-
tween signal and idler. Analogously to the signal to noise ratio in a generic
photon source, but extending the concept to the pair generation and coinci-
dence detection, it is introduced the coincidence to accidental ratio (CAR).
Only the coincidences occurring between signal and idler that belong to the
same initial pair are the actual coincidences that characterize the temporal
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correlation of the emitted photons. On the contrary, the coincidences of sig-
nal and idler photons of distinct pairs are indicated as accidental coincidences.
Accidental coincidences occur when a signal/idler photon is lost and a simulta-
neous detection with an idler/signal of a different pair is measured. An optimal
source of photon pairs would be characterized by a rate of "good" coincidences
Rsi much greater than the rate of accidental ones Racc. Consequently, for an
ideal source the CAR, defined as

CAR=
Rsi − Racc

Racc
, (2.17)

would approach infinity. From an experimental point of view, the measure-
ment of this parameter is carried out by connecting the timing electronics to
the idler and signal detectors, as shown in Fig. 2.8.
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Figure 2.8: Setup for the coincidence to accidental ratio measurement. The
source is based on a SFWM process in a waveguide.

2.2.6 Other parameters

Another useful parameter for the characterization of light sources is the
brightness B, that is the emission rate of single photons. The brightness of a
pulsed light source can be defined as the probability of detecting a single pho-
ton every laser pump pulse [21]. This parameter is used for both deterministic
and probabilistic photon sources. For the latter the probability of emission
scales with the pump power Pp. In particular, for four wave mixing processes
P(1)∝ P2

p and P(2)∝ P4
p [8]. This means that the emission rate of multipho-

ton states (thus the brightness) can be modified applying the proper power.

As mentioned before, several quantum information protocols, for instance
where qubits interactions need to occur in order to perform logic operations,
require high visibility interference between single photons [26]. This feature
demands photons which are indistinguishable in terms of energy, bandwidth
and polarization. Due to the phase matching issue already discussed, the spec-
tral emission properties of a source are challenging to control when compared
to the polarization and momentum of the output photons, that are more easily
tractable.
For these reasons the indistinguishability and quantum interference are often
taken into account when describing the main features of a photon source.
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2.3 Chip design and experimental set-up

The vision of an integrated quantum photonic chip, capable to fully process
the quantum states of light, requires three main components: the source, the
manipulation circuit and the detector of the quantum states. While the ma-
nipulation part has reached noticeable advancements [20], a valid solution for
the integration of the other components is still missing. As for the source, it is
of great interest the on-chip production of single photons performed through
heralded single photon generation.
The access to on-chip nonlinear phenomena is possible thanks to the waveg-
uide technology (Sec. 1.2), which guarantees a high optical intensity, thus low-
ering the power requirements. The aforementioned advantages in the use of
Silicon with respect to other materials, in addition to its high nonlinear index,
make this material the best choice for nonlinear integrated applications. These
applications range from quantum light generation to wavelength conversion,
from sensing and metrology to all kinds of signal processing. As for quantum
applications, it has been demonstrated that one can use nonlinear processes,
such as FWM, as a source of correlated photon pairs [30]. Among the other
applications, the opportunity to generate quantum light in the mid infrared
(from 2µm to 20µm), is appealing for applications in quantum sensing, such
as the high-sensitivity probing of gas molecules, or in quantum communica-
tions, since several transparent windows of the atmosphere are found in the
mid infrared (MIR), thus allowing low loss free space data exchange.
In this section is initially presented a chip implementing a heralded single pho-
ton source based on IFWM on a SOI multimode waveguide. Its characteriza-
tion is reported in Chap. 3. The idler photon, used as herald, is generated at
1.26µm, while the signal photon, the heralded one, is generated in the MIR
at 2.011µm. Having the photon pair generated at these wavelengths is a non-
negligible advantage: in fact, standard InGaAs single-photon avalanche diode
(SPAD) are highly efficient at the idler bandwidth and the signal photon is still
below the absorption edge of silicon dioxide. In the last part of the section the
experimental setup for the source characterization is described.

2.3.1 Integrated chip

The third order nonlinear process used to generate the correlated photon
pair is intermodal SFWM. It is performed in a multimode silicon rib waveguide,
whose cross section and measures are sketched in Fig. 2.9. The polarization
used is the transverse electric (TE), in fact the rib geometry chosen does not
allow TM polarization propagation. The intermodal combination used is the
1221TE: one pump photon on TE0 mode, the other on TE1 mode, while the
signal and idler are on TE1 and TE0 modes respectively.
In Fig. 2.10 the chip scheme is shown. At the beginning, the pump is splitted
via a 3dB directional coupler (A): in this way half of the initial power is coupled
on the first TE mode on arm 2, while the other half is propagating along arm 1.
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Figure 2.9: Cross-section of the SOI rib geometry of the waveguide. The
nominal width of the waveguide used is w= 1.95µm, the height of the strip
is hs = 190nm and the height of the slab h = 300nm. The material used
for the core is silicon, while the cladding and substrate are made of silica.

An asymmetric directional coupler (ADC) is then used as mode converter (B),
in particular the power of the first order mode coupled in arm 1 is coupled on
the second TE order mode of the waveguide 2.
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FIGURE 4.18: SOI rib geometry of the waveguides for heralded sin-
gle photons via intermodal FWM. w is the width of the waveguide, hs
the height of the strip, h the height of the slab, hclad the height of the
cladding over the strip and hsub the height of the substrate. The two
input pump photons, at λp, are converted into signal and idler pho-
tons, respectively, at λs and λi. In the bottom panels, the simulated
intensity profiles of the spatial modes excited in the rib waveguide
are shown within boxes with the same colors of the corresponding

waves in the top diagram.
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FIGURE 4.19: Design of the device used to generate heralded sin-
gle photons via intermodal FWM. The pump is injected through the
input port and then splitted through a 3 dB coupler (3dB-DC) (A).
The power in the reflected arm (1) is coupled on the second TE or-
der mode of the waveguide of the transmitted arm (2) through an
asymmetric directional coupler (ADC(λp)) (B). At this point half of
the pump power is travelling on the first TE order mode while the
other half excited the second TE order mode in the same waveguide.
This waveguide is then tapered up to the width (wFWM) required for
the phase matched intermodal FWM (C). The last stage of the device
(D) consists of an asymmetric directional coupler (ADC(λs)) used to
extract the signal wavelength from the idler and pump waves. The
idler and signal are in this way separated on-chip. At the output of
the device three ports are present: one for the residual pump not com-
pletely coupled through the ADC(λp), one for the idler photons and
the last for the signal photons. All input and output ports are tapered

to a width of 3.7 µm.

Figure 2.10: Chip scheme. The input and output ports are tapered to a
width of 3.7µm, in order to maximize the coupling with the tapered lensed
fibers used to inject and extract the light.

The ADC, with respect to the standard directional coupler, exploits two
different widths of the waveguides: when a single mode waveguide is placed
close to a multimode waveguide, it is possible to excite selectively one of the
supported different order modes.
Now, on the the same waveguide 2, half of the pump power is travelling on the
first TE order mode, while the other half excites the second TE order mode. By
modifying the geometry of this waveguide is reached the width wFWM necessary
for the correct phase matching of the FWM process (C). At the end (D) another
ADC is used to separate the signal wavelength from the idler: idler and signal
are in this way separated on-chip, without the necessity of further filtering.

2.3.2 Measurement set-up

The experimental setup used for the heralded single photon source is sketched
in Fig. 2.11.

A 1.55µm pulsed laser pump is used, with a 40ps pulse duration and
80 MHz repetition rate. The pump is coupled into the chip via a lensed fiber.
Signal and idler are extracted from the chip with two tapered lensed fibers.
The idler is sent through a low pass filter at 1350 nm and then detected via
a InGaAs detector. The signal, after going through a 1900nm long pass filter,
is sent to the up-conversion system. Here, in the PPLN crystal up-converter,
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Figure 2.11: Sketch of the setup in the case of the heralding experiment.
For the purity and Car measurements the timing electronics is connected
accordingly to Fig. 2.5 and 2.8, respectively.

the 2µm signal is mixed with a pump photon at 1064nm to generate one at
695 nm via the second order nonlinear process of sum frequency generation.
In the case of a HBT experiment, the visible photon subsequently goes through
the beam splitter and two silicon SPADs count the transmitted or reflected pho-
tons. For other type of measurements, e.g. the CAR, the up-converted light is
directly detected by a Si-SPAD. In the sketch, the timing electronics is con-
nected for a HBT experiment, but depending on which kind of measurement
is performed, the different SPADs are connected according to Fig. 2.5 or 2.8.
As for the coincidence electronics, a Time Tagger has been used. This device is
a time-to-digital converter and logic analyzer able to perform Time-Correlated
Single-Photon Counting (TCSPC), start-stop and cross-correlations measure-
ments.



Chapter 3

Characterization of a heralded
single photon source

In this chapter are presented the results of the measurements performed in
order to characterize the heralded single photon source described in Section
2.3.

3.1 CAR measurement

For the coincidence to accidental ratio experimental measurement, in the
pulsed source case, instead of the coincidence rate of Eq. (2.17), it is possible
to use the number of coincidence counts N(t). It is sufficient to notice that the
number of accidental occurrences is just the number of the delayed signal-idler
coincidences N(∆t):

CAR=
Nsi − Nacc

Nacc
=

Nsi(0)
Nsi(∆t > 0)

− 1, (3.1)

that, using the results of Sec. 3.2, can also be written as CAR= g(2)si − 1.
As for the measurement procedure, even if the laser pump duration is nom-
inally 40ps, Nsi(∆t) has been measured integrating the coincidence counts
under a bin width of 1ns, in order to account for the jitter of detectors and
electronics.
For sake of comparison with other sources, since the up-converter noise is not-
negligible at all, it is given both a raw CAR value and a noise corrected one.
In order to perform this correction, the average noise counts falling between
two subsequent pump pulses are subtracted to all the bins containing the sig-
nal photons.
In Fig. 3.2 is reported, as an example, the measured histogram for a 15.7mW
pump power. The bins are centered at multiple pump periods; the raw counts
are in blue, while the noise corrected ones in red.

As one can notice from Fig. 3.1 and 3.2, the acquisition time seems to be
long enough for a proper CAR estimation. In fact the bin height results almost
the same for all the delayed side peaks. In the inset of Fig. 3.1, an example of
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Figure 3.1: Example of signal-idler counts
as a function of the time delay for Pp =
15.7mW. In the inset the 1ns integration
bin is represented by the yellow bands.
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Figure 3.2: Example of signal-idler bin
counts for Pp = 15.7mW. The ratio be-
tween the zero-delay peak and the average
of the side bars gives the CAR.

the coincidence counts is present, where the 1 ns integration bin is represented
by the yellow bands.
The CAR, with and without noise correction, is calculated for 10 different pump
power values (Fig. 3.3). As the power decreases, the CAR value, both raw
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Figure 3.3: CAR as a function of the average pump power. In blue the raw
values and in orange the noise corrected ones.

and corrected, becomes higher. That is an expected behaviour, since as previ-
ously stated, the dependence of multipair generation probability on the aver-
age pump power is P(1)∝ P2

p and P(2)∝ P4
p .

The maximum value for the non corrected CAR is 4.6(2), while the maximum
corrected CAR is 36(5).
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3.2 Purity estimation

The relation between the purity of a heralded single photon P and the zero-
delay second order coherence has already been outlined in Sec. 2.2.1. From
an experimental point of view the g(2) can be expressed as a function of the
probability detection of coincidences at a fixed delay, previously called ∆t, as

g(2)(∆t) =
Pss(∆t)

Ps(t)Ps(∆t)
(3.2)

where the subscripts indicate that the measured beam is the signal. Pss(∆t)
identifies the probability of coincidences detection with a ∆t between the two
HBT channels, and Ps ≡ Ps(∆t) = Ps(t) is the detection probability of a single
detector, which depends neither by time, nor the detector.
From its definition in Eq. (2.3), it can be seen that the numerator of the g(2),
for each∆t, measures the number of coincidences given by the delayed detec-
tion events in the two arms of the interferometer. Subsequently the number of
coincidences are averaged over all the ensemble coincidence events.
In the case of a pulsed laser, the ensemble average is simply the average on
the Np pump pulses used for the measurement. The total number of coinci-
dences is then Nss(∆t) = Pss(∆t)Np. It is possible to exploit the fact that, when
the ∆t between coincidence counts is longer than the pulse duration, the two
detectors detections are independent events:

Pss(∆t > 0) = Ps(t)Ps(∆t) = PsPs (3.3)

As a consequence, taking the number of zero delay coincidences over the
number of subsequent coincidence events yields, using Eq. (3.2):

Nss(0)
Nss(∆t > 0)

=
Pss(0)Np

Pss(∆t > 0)Np
=

Pss(0)
PsPs

= g(2)(0). (3.4)

Clearly, also the unheralded second order coherence for non-zero delay
can be calculated, but in that case also the numerator of Eq. (3.4), would be
factorizable, yielding unit g(2).

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

Figure 3.4: Expected g(2) as a function of the time delay for a pulsed source:
the pump is pulsed with repetition rate 1/T .
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This fact can be seen in Fig. 3.4, where is represented the expected g(2) as
a function of time.
The g(2) measurement has been carried out exactly like the CAR, thus by in-
tegrating over a defined bin width, with and without noise correction. In Fig.
3.6 is reported, as an example, the measured histogram for a 25.04mW pump
power. From both Fig. 3.5 and 3.6, is clear that longer acquisition times are
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Figure 3.5: Example of counts as a func-
tion of the time delay for Pp = 25.04mW.
In the inset the 1 ns integration bin is rep-
resented by the yellow bands.
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Figure 3.6: Example of signal-signal bin
counts for Pp = 25.04 mW. The ratio be-
tween the zero-delay peak and the average
of the side bars gives the g(2).

required for a better g(2) estimation: in fact the delayed peaks heights are not
the same, as instead it should be for a measure carried on long enough. Still,
the unheralded g(2) has been measured for various input powers, as shown in
Fig. 3.7, for the signal photon in the MIR. It is noteworthy that a lower power is
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Figure 3.7: Unheralded g(2) as a function of the average pump power. In
blue the raw values and in orange the noise corrected ones.

again beneficial, since a reduced multipair generation increases the unheralded
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g(2). The maximum measured purity of the single photon state, calculated as
P = 1− g(2)(0), is found for the minimum power and results 0.68(13).

3.3 Antibunching dip

The final measure performed is the heralded second order coherence.
Starting from the expression of the conditioned second order coherence in Eq.
(2.14) and developing the concepts of Sec. 3.2, one can write the heralded g(2)

as a function of the number of coincidences as

g(2)h (∆t) =
N12i(∆t)

N1i(t)N2i(∆t)
Ni(t), (3.5)

where N12i indicates the three-fold coincidences between the idler and the
arms 1 and 2 of the HBT interferometer; the two-fold coincidences counts be-
tween only one signal beam and the herald are, instead, N1i and N2i; finally Ni

is the number of idler detections. Once again, in the case of a pulsed source
the probabilities are factorizable, yielding a unit second order coherence when
∆t > 0.
As a consequence, for a sub-Poissonian pulsed light, the g(2)h expected profile
is the one sketched in Fig. 3.8. According to Eq. (3.5) in principle, three-fold,

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

Figure 3.8: Expected g(2)h for a sub-Poissonian pulsed light as a function of
the time delay. The pump is pulsed with repetition rate 1/T .

two-fold and single idler coincidences should be measured simultaneously in
order to get the actual shape of the second order coherence. But, since the
quantity of interest is the zero-delay g(2)h , keeping in mind that P = P(t2) =
P(t) it is possible to write

g(2)h (0) =
N12i(0)

N1i(t2)N2i(0)
Ni(t2) =

P12i(0)Np

P2i(0)Np

PiNp

P1iNp
=

P12i(0)
P2i(0)

Pi

P1Pi

P2

P2

=
P12i(0)
P2i(0)

P2i

P12i
=

N12i(0)
N2i(0)

N2i(∆t > 0)
N12i(∆t > 0)

=
N3(0)

N3(∆t > 0)
,

(3.6)
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where N3(∆t) is defined as the three-fold and two-fold ratio N12i(∆t)
N2i(∆t) . Eq.

(3.6) then gives a pragmatical result that allows to measure the antibunching
as the ratio between the non-delayed and the delayed N3 counts.
The analysis of the heralded g(2) has been conducted analogously to the un-
heralded one. In Fig. 3.9 and 3.10 are present the bin counts for both the
three-fold and two-fold coincidences, measured for Pp = 20.4 mW.
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Figure 3.9: Example of the two-fold bin
counts as a function of the delay ∆t, for
Pp = 20.4 mW.
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Figure 3.10: Example of the three-fold bin
counts as a function of the delay ∆t, for
Pp = 20.4 mW.

If, on one hand, the two-fold coincidences do not reveal any acquisition
time problem whatsoever, on the other hand it is clear that the integration time
is not enough for the three fold. The side peaks are indeed all different, due to
the fact that a proper acquisition time would be prohibitive with the setup used.
Nonetheless, the measurement of the heralded second order coherence has
been performed for different pump powers. The results, for the noise corrected

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.11: Heralded g(2) as a function of the average pump power.
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values, can be seen in Fig. 3.11. Manifestly, due to the higher probability of
multipair emission the g(2)h increases as the average pump power is higher.
From these measurements it is clear the presence of antibunching behaviour,
especially for the lower values of Pp. However, as explained in Sec. 2.1.1, a
true single photon emission behaviour can be claimed only with a conditioned
second order coherence below 0.5. Thus, only for the minimum power value
used, we can assert to have single photon emission, in particular the minimum
measured value of g(2)h is 0.37(9).
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Conclusions

A quantum device able to successfully encode and manipulate information
on a large scale would provide unprecedented computational power and un-
conditionally secure communication. In this regard, the use of single photons
as qubits is a particularly appealing concept. The photons low decoherence
and inherent low-loss transmission are key features required for quantum com-
puting and quantum communication applications. In this scheme, integrated
single photon sources are fundamental ingredients in the development of reli-
able quantum architectures.
Within the photonics framework, the use of silicon technology has not equals in
terms of fabrication reliability and footprint. In chapter 1 have been discussed
the advantages of the use of silicon and its dioxide for the optical waveguides
fabrication. Moreover, the formation and subsequent propagation of waveg-
uide modes in a multimode waveguide has been presented. A brief overview of
nonlinear processes has been reported and, in view of a single photon source
implementation, particular focus has been given to four wave mixing. While in-
tramodal FWM has a limited generation bandwidth, and cannot access the mid
infrared part of the spectrum, intermodal FWM enables larger spectral trans-
lations. IFWM thus provides a suitable mechanism for the implementation of
heralded single photon sources with a large detuning between the generated
idler and signal. This is the topic of chapter 2, where the basics of single pho-
ton sources are introduced. Here, the focus is on the heralded sources, where
the detection of one photon heralds the creation of the other. The major ex-
perimental parameters and metrics for the characterization of heralded single
photon sources are subsequently provided.
Ultimately, a on-chip heralded single photon source exploiting intermodal FWM
is presented. After a brief description of the chip scheme, the measurement
setup used for its characterization is outlined.
In the third chapter of this thesis, I conducted an analysis of the measure-
ments performed in order to estimate the main experimental parameters of
the source. Due to the significant noise, mainly generated by the up-converter,
a correction procedure had to be carried on. The generation of single photons
at 2.011µm heralded by the idler at 1.26µm have been demonstrated. In fact,
a minimum heralded second order coherence of 0.37(9) is measured. A max-
imum purity of 0.68(13) and a maximum CAR of 36(5) are obtained. These
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parameters do not exceed the results of other sources, such as ring resonators
[31], but the purpose of the experiment was to show the possibility to have a
single photon source with a large spectral conversion exploiting IFWM, rather
than the demonstration of a high purity source. These results are promising
for the developing of mid infrared photonics, where a viable integrated source
of light is still missing. Integrated quantum devices in the MIR wavelength,
would provide a new powerful tool for the implementation of free space com-
munications and quantum sensing.
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