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Introduction

This report is based on the hands-on session, given at the Univer-
sity of Trento by Prof. Daniele Dell’Orco, on January 29th, 2020, in
the context of the Winter School on Physics of the Cell. The objec-
tive of this write-up is on one hand to briefly synthesize the lecture
on the modelling of dynamic biophysical systems, on the other hand
to implement a simplified model of phototransduction via the ODE-
based version of IQMtools, i.e. a MATLAB toolbox used in class
for the implementation of a different biophysical system.

1 Modelling of biophysical systems

In order to model a network structure in a formal way we need at first to define the
reactants, the products and the modifiers of the structure. While we are doing that,
we obviously also need to keep in mind that, for a particular biophysical system,
in general there is more than one reaction. So the reactant of one of these could
be the product of another one. To address this fact we use a single vector P to
identify the concentration of the N products, reactants and eventually modifiers.
Moreover if we know the rate at which every reaction occurs we can stuck them in
an array R = (R1, R2, ..., Rn)

T , where Ri is the rate at of the i-th reaction. Now it is
simple to link these two vectors since we know the stoichiometric information of the
reactions, it is important though to bear in mind that by doing that we are assuming
that our system is described by a static model. We use the stoichiometric matrix
χ ∈ MNn(R), which is composed of the coefficients of the reactants or products
(in columns) for every reaction (in rows). Now we can write all the dynamic of
our biophysical system in a formal way by the relation d

dt
P = χR. Since R isn’t a

constant, but a function of P what we have is an ordinary differential equation. To
solve these type of ODEs we can use numerical integration methods but the problem
now is to determine the mathematical expressions for the reactions rate.
In order to do that we use the law of mass action, and here we are making a second
assumption. This law says that the rates of the reactions are directly proportional
to the product of the activities or concentrations of the reactants, but it holds only
in the case of dynamic equilibrium. The statement is true, strictly speaking, only
for elementary reactions made of a single mechanistic step. Hence we are assuming
that every reaction we are modelling is an elementary reaction, we are basically
neglecting intermediate steps. That is not always true, in fact macromolecular
interactions depend on several factors beyond concentration, such as temperature,
the presence of a solvent, pressure or stirring.
Given Ai, Bi, Ci and Di reactants and products of the i-th reaction

aAi + bBi ←→ cCi + dDi

with a, b, c, d stoichiometric coefficients, than the total rate of the Ri can be written
as

Ri = k1[Ai]
a[Bi]

b − k2[Ci]
c[Di]

d
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in this case k1 and k2 are the constants for the forward and backward part of the
reaction.
In the case instead of an enzymatic reaction, if we consider an enzyme E binding
to a substrate S, to form a complex ES which releases the product P, than we can
write

E + S
kf←−−→
kb

ES
kcat−−−→ E + P

introducing the forward, backward and catalytic rate constants. Now we exploit the
Michaelis-Menten equation - which holds in the same assumption domain discussed
above - in order to write the reaction rate as

Re =
Vmax · [S]
kd + [S]

where kd = (kcat + kb)/kf is again an unvarying real number, namely a constant of
dissociation, and Vmax

.
= kcat [E]tot.

Now the problem reduces to the determination of all the ki constants for our reac-
tions. The parameters are not entirely inferred experimentally, but the estimation
process consist of a feedback loop that exploits both experimental and simulated
data. The workflow for the parameter values determination can be outlined as
follows

2 IQMtools implementation of a phototransduction model

The phototransduction model we want to implement is inspired by the work of Fel-
ber et al., taken by the Biophysical Journal (71), 1996, 3051-3063.
This model exploits a mesoscopic approach that neglects any detail of intra- or in-
termolecular reaction: basically protein-protein interaction is approximated by a
single step that simultaneously include the encounter and reaction of two proteins.
Furthermore, it is assumed that any reaction or diffusion step is independent of the
history of the system. This will allow us to use an ODE solver for the equations
that rule the systems as illustrated in the first section.
The system we are studying is an example of a G-protein cascade of reactions hap-
pening on rod disc membranes. It consists of the photoreceptor rhodopsin (R),
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the G-protein transducin (Gt), and a phosphodiesterase (PDE) effector, which hy-
drolyzes cytosolic cyclic guanosine monophosphate (cGMP). This nucletide is a com-
mon regulator of ion channel conductance, in fact the sodium ion channels in the eye
photoreceptors are cGMP-gated, so degradation of cGMP causes sodium channels
to close. When this happens there is an hyperpolarization of the photoreceptor’s
plasma membrane that leads to visual information being sent to the brain.
The first single-step reaction, as labelled in Fig. 1, consist of the multistep transition
of rhodopsin into an active state R∗. This conversion takes place within milliseconds

Figure 1: Model of the Transducin GTPase cycle, taken from Felber et al., Biophysical
Journal (71), 1996, 3051-3063.

after the absorption of a single photon. In the second step there is the coupling of
the active rhodopsin to the G-protein transducin (R∗ + Gt → R∗Gt). This reac-
tion is followed immediately after by the dissociation of R∗Gt leaving free active
rhodopsin and GTP-bound G∗ (reaction 3). The G∗ molecule now bind to the PDE
thus forming the cGMP-hydrolyzing effector enzyme (G∗+PDE→ G∗PDE∗). With
this 4th reaction ends also the activation step; during the deactivation one, the ac-
tive rhodopsin make a transition into inactive (Ri) and the G∗ goes into a refractory
state Gr (reactions 5 and 6). Also the dissociation of G∗PDE∗ creates some Gr along
with inactive phosphodiesterase effector. In the last step (reaction 8) there is the
recycling of the G-protein from the refractory state to the holoprotein Gt that is
again ready for interaction with the receptor.
One particular that is important to bear in mind is that photoactivated rhodopsin
(R*) molecules catalytically activate many copies of the G-protein (which in turn
binds and activates the effector). Moreover the deactivation of R∗ may comprise
different reaction states, namely, binding and activation of rhodopsin kinase, phos-
phorylation of R∗, and binding of arrestin. Therefore our model of a first-order
decay of R∗ to Ri implies a strong assumption on the velocity - that is supposed to
be fast relatively to the other processes - of the intermediate steps required for the
deactivation.
The IQMtools code used for the simulation can be found in the Appendix. With
obvious notation, in the MODEL PARAMETERS section, one can found the con-
stants for the reaction rates: the values used for this parameters were taken from
the article by Felber et al. mentioned above.
In Fig. 2 is shown the result of the simulation, carried on for 4 seconds, in the case
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of a single rhodopsin activation by a photon. We can see a similar kinetics for G∗

Figure 2: Number of G∗, G∗PDE∗ and PDE molecules as a function of time.

and G∗PDE∗ since they both start from zero and have a maximum at about 0.32
s. As we expect, initially the number of G∗ molecules is greater than the one of
G∗PDE∗, but after less than 50 ms the amount G∗PDE∗ created overcome the G∗

available. Since the latter molecule is needed for the formation of the former one, is
natural to have again a 50 ms delay between the two maxima.
The simulation with the same initial parameters, except for the number of rhodopsin
photoactivations (that in this case is 2), is shown in Fig. 3.

Figure 3: Number of G∗, G∗PDE∗ and PDE molecules as a function of time for 2
photoactivations of rhodopsin.

Of course we notice a substantial increase with regard both to the G∗ and
G∗PDE∗ molecules. The interesting fact is that despite the abundance of active
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G-protein (that more than doubled from the previous case), the cGMP-hydrolyzing
effector enzyme can not be formed since there is an upper bound coming from
the number of the PDE molecules. What happens instead is that the number of
molecules of the enzyme is sensibly high for a longer period of time (basically there
is a flattening of the maximum), thus allowing the degradation of cGMP not more
intensely but more lasting in time.
As for the number of PDE molecules we can see that in both cases the time that
correspond to the minimum is the same of the one that correspond to the maximum
of G∗PDE∗, this happens since in our model the phosphodiesterase is supposed to
have interactions only with the G∗PDE∗ contributing to its formation.
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3 Appendix

Code used for the ODE-based version of IQMtools:

∗∗∗∗∗∗∗∗∗∗ MODEL NAME
Hofmann model f o r phototransduct ion

∗∗∗∗∗∗∗∗∗∗ MODEL NOTES
Biophys i ca l Journal Volume 71 , 1996 , 3051−3063

∗∗∗∗∗∗∗∗∗∗ MODEL STATES
d/dt (G) = −R2+R8
d/dt (Gact ) = +R3−R4−R6
d/dt (GactPDEact ) = +R4−R7
d/dt (Gr) = +R6+R7−R8
d/dt (PDE) = −R4+R7
d/dt (R) = −R1
d/dt (Ract ) = +R1−R2+R3−R5
d/dt (RactG) = +R2−R3
d/dt (Ri ) = +R5

G(0) = 3000
Gact (0 ) = 0
GactPDEact (0 ) = 0
Gr (0 ) = 0
PDE(0) = 300
R(0) = 1
Ract (0 ) = 1
RactG (0) = 0
Ri (0 ) = 0

∗∗∗∗∗∗∗∗∗∗ MODEL PARAMETERS
k1 = 100
k2 = 1
k3 = 7000
k4 = 0 .3
k5 = 2
k6 = 0.05
k7 = 8
k8 = 2

∗∗∗∗∗∗∗∗∗∗ MODEL VARIABLES
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∗∗∗∗∗∗∗∗∗∗ MODEL REACTIONS
R1 = k1∗R
R2 = k2∗Ract∗G
R3 = k3∗RactG
R4 = k4∗Gact∗PDE
R5 = k5∗Ract
R6 = k6∗Gact
R7 = k7∗GactPDEact
R8 = k8∗Gr

∗∗∗∗∗∗∗∗∗∗ MODEL FUNCTIONS
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